The Study of Metal Sulfide as Efficient Counter Electrodes on the Performances of CdS/CdSe/ZnS-co-sensitized Hierarchical TiO2 Sphere Quantum Dot Solar Cells

نویسندگان

  • Nattha Buatong
  • I-Ming Tang
  • Weeraphat Pon-On
چکیده

The effects of using different counter electrode metal sulfides on the performances of solar cells made with CdS/CdSe/ZnS quantum dots co-sensitized onto hierarchical TiO2 spheres (HTSs) used as photo-electrode are reported. The HTS in the QDSSCs is composed of an assembly of numerous TiO2 spheres made by the solvolthermal method. The photoelectrical performance of HTS/CdS/CdSe/ZnS coupled to CuS or to Cu2ZnSn(S1 - x Se x )4 with x = 0, 0.5, or 1.0 counter electrodes (CEs) were compared to those coupled to Pt CE. The HTS/CdS/CdSe/ZnS coupled to the CuS CE showed the highest power conversion efficiency η (of 3.46%). The efficiencies η of 1.88, 2.64, and 2.06% were obtained for CZTS (x = 0), CZTS0.5Se0.5 (x = 0.5), and CZTSe (x = 1), respectively. These are significantly higher than those using a standard Pt CE (η = 0.37%). These higher efficiencies are the results of the higher electrocatalytic activities when the metal sulfide CEs are used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells

CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...

متن کامل

Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells.

We have fabricated highly efficient CdS/CdSe quantum dot-sensitized solar cells (QDSSCs) featuring low-cost cobalt sulfide (CoS) counter electrodes. Under 100 mW cm(-2) irradiation, the CdS/CdSe QDSSC featuring a CoS electrode provided an energy conversion efficiency as high as 3.4%.

متن کامل

Quantum dot-sensitized solar cells having 3D-TiO2 flower-like structures on the surface of titania nanorods with CuS counter electrode

The photovoltaic performance of a quantum dot (QD)-sensitized solar cell consisting of CdS/CdSe/ZnS QDs loaded onto the surface of the three-dimensional (3D) flower-like TiO2 structure grown on an array (1D) of TiO2 nanorods (FTiR) is studied. The flower-like structure on the rod-shaped titania was synthesized using a double-step hydrothermal process. The FTiR array exhibited a 3D/1D composite ...

متن کامل

Restricted charge recombination process in PbS quantum dot sensitized solar cells by different coating cycles of ZnS films

The relatively low power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs) is attributed to charge recombination at the interfaces. Charge recombination process could be suppressed by coating the QD layer with a wide band gap semiconductor such as ZnS, which acts as a blocking layer between the QDs and hole transport material (HTM). In present study, to improve PCE of P...

متن کامل

Preparation of CdIn2S4-CdS nanocomposite via a green route and using them in dot-sensitized solar cells for boosting efficiency

In this work In2S3 and CdS nanoparticles were prepared by a simple hydrothermal method and then annealed at 500 °C for 2 h in an Ar gas until CdIn2S4(CdIS)-CdS nanocomposites were formed. Afterwards, efficiency of the as-synthesized CdIS-CdS nanocomposite in quantum dot-sensitized solar cells (QDSSCs) was evaluated. For this purpose, the as-prepared CdIS-CdS nanocomposites were deposited on TiO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017